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Abstract
These notes explore the consequences of simple representation theory of sl2

for the expressions for Padé approximants and discuss the role of a generalized
Hirota derivative therein.
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1. Introduction

In [2, 3], a theory of Hirota maps has been developed in which certain Hirota-like operators
are shown to act as intertwining operators between certain tensored representations of sl2.
This gives a constructive approach to the representation theory which is obviously very simple
in this case. Similar operators can be developed for sln [4]. In addition the superficial
resemblance to the classical Hirota derivative is shown to become a precise equivalence in the
limit that the representations are allowed to become infinite dimensional. Nevertheless the
role of these Hirota maps in the theory of integrable systems remains obscure, in particular,
the extent to which they allow representation of integrable-like equations and their solutions.

The present paper arose from a study of the structure of Padé approximants and might be
seen as a step towards resolving this issue. In particular we consolidate here the definition of
Hirota maps in a way that makes very clear the relation between finite and infinite dimensional
representations, which introduces a new type of Hirota map satisfying a closed algebra (again
sl2) and we show how the coefficients of the rational approximation to an analytic function
can be interpreted via the representation theory. In part this provides a very efficient way of
calculating these coefficients which involves only derivations and not the solutions of large
linear systems. Finally we will see how each approximant is associated with a highest weight
vector. Relations between these highest weight vectors are of the ‘Lozenge’ type which occur
in the standard theory [5, 7] and in present treatments of integrable discrete systems [6, 8].

The paper is essentially synthetic in its approach, drawing together threads from
representation theory, bilinear differential equations and integrable discrete systems.
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2. Fundamental modules of the theory

The most basic objects in our approach are the Z modules V [n] for n ∈ Z with basis
{xiyj |i, j ∈ Z, i + j = n}.

V [n] is an sl2(Z) module under the action

e(xiyj ) = jxi+1yj−1 (2.1)

f(xiyj ) = ixi−1yj+1 (2.2)

h(xiyj ) = (i − j)xiyj (2.3)

where [e, f ] = h, [h, e] = 2e and [h, f ] = −2f.
This action is conveniently represented by differential operators,

e = x∂y (2.4)

f = y∂x (2.5)

h = x∂x − y∂y. (2.6)

The most important submodules of V [n] are

V
[n]

0 = Z〈xiyj |i + j = n, i � 0〉 (2.7)

and

V [n]
∞ = Z〈xiyj |i + j = n, j � 0〉. (2.8)

When n < 0 V
[n]

0 and V [n]
∞ have trivial intersection but when n � 0 their intersection

V
[n]

glob = Z〈xiyj |i + j = n, i, j � 0〉 (2.9)

is a finite dimensional sl2(Z)-module with basis the n + 1 independent, homogeneous
monomials of degree n.

There are quotient modules, V [n]
/
V

[n]
0 etc and in the case that n � 0,

V [n]
/
V

[n]
0

∼= V [n]
∞

/
V

[n]
glob.

Note that although V
[n]

glob � V
[n]

0 � V [n], for n � 0, we do not have complete reducibility,

e.g. f(xn+1y−1) ∈ V
[n]

glob.

3. Pairing and associated modules

We wish to think of analytic functions as carrying an sl2(Z) action and we do this in the
following manner.

Let F [n] be a Z-module with basis
{
f

[n]
i,j |i + j = n

}
. We take as understood an

underlying field K and that f ∈ F [n] is a function f : Z → K and we define a pairing
F [n] × V [n] → K [n]((x, y)), formal Laurent series of degree n over P

1(K) by

(f, v) =
∑

i+j=n

f
[n]
i,j xiyj . (3.1)

Then there is an induced action of sl2(Z) on F [n] given by the invariance conditions,

(e(f ), v) + (f, e(v)) = 0 (3.2)

(f(f ), v) + (f, f(v)) = 0 (3.3)

(h(f ), v) + (f, h(v)) = 0. (3.4)
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It is easy to see that the action is given explicitly by

e
(
f

[n]
i,j

) = −(j + 1)f
[n]
i−1,j+1 (3.5)

f
(
f

[n]
i,j

) = −(i + 1)f
[n]
i+1,j−1 (3.6)

h
(
f

[n]
i,j

) = −(j − i)f
[n]
i,j . (3.7)

The submodule structure of F [n] is not quite the same as for V [n]. For instance, there is a
finite dimensional submodule only when n < 0.

Our initial thrust is to associate sections analytic in x with a quotient module F
[n]
0 of F [n]

and to extend the notion of Hirota-map from V
[n]

glob to F
[n]
0 .

4. Analytic quotient modules

Let
(
V

[n]
0

)⊥
be the set

{
f ∈ F [n]

∣∣ (f, v) = 0,∀ v ∈ V
[n]

0

}
, a submodule of F

[n]
0 . Then we

want

F
[n]
0 = F [n]

/(
V

[n]
0

)⊥
(4.1)

with the sl2(Z) quotient action, so e
(
f

[n]
0,n

) = 0.

Then F
[n]
0 × V

[n]
0 → K

[n]
0 ((x, y)), the sections analytic at x = 0, i.e.

f (x, y) =
∑

i�0,i+j=n

f
[n]
i,j xiyj (4.2)

and e(f (x, y)) = f(f (x, y)) = 0.

5. Algebra of Hirota maps on tensor products of fundamental modules

Hirota maps at their simplest act on 2-fold tensor products of the modules V [n]. They induce, by
the invariance condition, corresponding maps on tensor products of the F

[n]
0 . Most important

is the fact that they commute with the actions of e, f and h and so act as intertwining operators
for representations.

The maps we will define here extend those defined in [2–4] from F
[n]
glob to all of F [n] and

also to V [n] which is actually where it is most convenient to start.
Define

F : V [n] ⊗ V [m] → V [n+1] ⊗ V [m+1] (5.1)

E : V [n] ⊗ V [m] → V [n−1] ⊗ V [m−1] (5.2)

by

F(a ⊗ b) = xa ⊗ yb − ya ⊗ xb (5.3)

E(a ⊗ b) = ∂xa ⊗ ∂yb − ∂ya ⊗ ∂xb. (5.4)

These Hirota maps restrict to tensor products of the V
[n]

0 . It is also easy to show that they
satisfy the sl2 commutation relations:

[E, F] = H [H, E] = 2E [H, F] = −2F (5.5)

where H = I + δ, I and δ being the unit derivation and degree derivation respectively. Thus I

counts the degree of the tensor product whilst δ(a) = na for a ∈ V [n].
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Most crucially though E, F and H all commute with the e, f and h actions and so intertwine
modules: if M � V [n] ⊗ V [m] then E(M) � V [n−1] ⊗ V [m−1] and F(M) � V [n+1] ⊗ V [m+1].

For instance:

[F, e](1 ⊗ 1) = F(x∂y ⊗ 1 + 1 ⊗ x∂y) − e(x ⊗ y − y ⊗ x)

= x2∂y ⊗ y − yx∂y ⊗ x + x ⊗ yx∂y − y ⊗ x2∂y

− x∂yx ⊗ y − x ⊗ x∂yy + x∂yy ⊗ x + y ⊗ x∂yx

= 0. (5.6)

For higher degree tensor products there are clearly many more operators of this type that
can be defined and there are new types too which go to form a complicated algebraic structure
which will be the subject of another paper.

6. Hirota maps on tensor products of associated modules

The pairing F [n] and V [n] extends in the obvious way to pairings of tensor products. Thus

(f ⊗ g, u ⊗ v) = (f, u)(g, v) (6.1)

and consequently there is an action of the Hirota maps on F [n] ⊗ F [m], namely:

(E(f ⊗ g), u ⊗ v) + (f ⊗ g, E(u ⊗ v)) = 0 (6.2)

(F(f ⊗ g), u ⊗ v) + (f ⊗ g, F(u ⊗ v)) = 0 (6.3)

or, explicitly:

E : F [n] ⊗ F [m] → F [n+1] ⊗ F [m+1]

(6.4)
E

(
f

[n]
i,j ⊗ f

[m]
k,l

) = −(i + 1)(l + 1)f
[n+1]
i+1,j ⊗ f

[m+1]
k,l+1 + (j + 1)(k + 1)f

[n+1]
i,j+1 ⊗ f

[m+1]
k+1,l

F : F [n] ⊗ F [m] → F [n−1] ⊗ F [m−1]

(6.5)
F
(
f

[n]
i,j ⊗ f

[m]
k,l

) = −f
[n−1]
i−1,j ⊗ f

[m−1]
k,l−1 + f

[n−1]
i,j−1 ⊗ f

[m−1]
k−1,l .

These maps intertwine with the sl2 action on the tensor products of associated modules.
It can also be checked that they restrict to tensor products F

[n]
0 ⊗ F

[m]
0 of the analytic modules

too.
It is not hard to see that the usual plethysm for tensor products of sl2 modules generalizes

in the following way,

F
[n]
0 ⊗ F

[m]
0

∼=
∞⊕

p=0

F
[n+m−2p]
0 (6.6)

for n,m ∈ Z. Further E is injective and

0 → F
[n−1]
0 ⊗ F

[m−1]
0

E

↪→ F
[n]
0 ⊗ F

[m]
0 � F

[n+m]
0 → 0 (6.7)

is exact. Similarly,

0 → F
[n+m]
0 ↪→ F

[n]
0 ⊗ F

[m]
0

F

� F
[n−1]
0 ⊗ F

[m−1]
0 → 0 (6.8)

is exact also.
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7. Casimirs

The Casimir operator

C = ef + fe + 1
2 h2 (7.1)

commutes with the Hirota maps and takes the value 1
2δ(δ + 2) on the V [n] where δ = x∂x +y∂y

is the degree derivation, δ(xiyj ) = i + j . It will enable us to calculate n for any representation
isomorphic to some F

[n]
0 .

8. Padé approximants

A comprehensive introduction to the structural theory of Padé approximants is given in [9].
We here summarize the notation we shall use for rational approximations of analytic functions
and explain the link with representation theory. We will provide some detailed tables of
coefficients in an appendix. These can be used to reinforce later statements empirically.

Given a function analytic in z we seek to approximate it to order zn+m+1 as a ratio of
polynomials in z, the numerator of degree n and the denominator of degree m. From our point
of view it is convenient to homogenize the functions involved by putting z = x/y. We use the
following notation:

P [n,m](x, y) = p
[n,m]
0,n yn + p

[n,m]
1,n−1xyn−1 + · · · + p

[n,m]
n,0 xn (8.1)

Q[n,m](x, y) = q
[n,m]
0,m ym + q

[n,m]
1,m−1xym−1 + · · · + q

[n,m]
m,0 xm (8.2)

F [n,m] =
∞∑
i=0

f
[n,m]
i,σ−i x

iyσ−i (8.3)

where σ = n − m,
P [n,m](x, y)

Q[n,m](x, y)
= F [n,m] ∼ yσ f (z) mod zn+m+1 (8.4)

and f (z) is the given function that is to be approximated

f (z) =
∞∑
i=0

fiz
i . (8.5)

It is the coefficients f0, f1, . . . , fn+m which appear in the well-known expressions for the
coefficients of P [n,m] and Q[n,m], but, in the present treatment we have to be aware that, being
the first n + m + 1 coefficients f

[n,m]
i,σ−i of F [n,m] they are to be interpreted carefully as dependent

on n and m.
Multiplying through by Q[n,m](x, y) in (8.4) and equating coefficients of monomials xiyj

gives an infinite set of linear equations for the coefficients of P [n,m] and Q[n,m] in terms of
the n + m + 1 ‘fundamental variables’ f

[n,m]
0,σ , f

[n,m]
1,σ−1, . . . , f

[n,m]
n+m,−2m. The coefficients of P [n,m]

and Q[n,m] are, of course, determined only up to some overall factor. Further the remaining
coefficients f

[n,m]
i,σ−i for i > n + m are also determined by these fundamental ones.

From the representation theoretic viewpoint which we are developing the polynomials
P [n,m] and Q[n,m] correspond to finite dimensional representations of sl2 and F [n,m] to an infinite
dimensional representation. Relation (8.4) between P [n,m],Q[n,m] and F [n,m] is invariant under
the action of e, f and h. A simple consequence of this is that once we have identified the nature
of the representation carried by F [n,m] and expressed, say, the single coefficient Q[n,m]

0,m in terms
of the fundamental variables, all the other coefficients follow by applications of f: that is, we
can use the representation theory to construct the solution to the infinite linear system for the
coefficients without having to invert (for large m and n) large matrices.



7704 C Athorne

We shall answer the following questions:

1. How can we construct F [n,m] from the module F [σ ], σ = n−m, that we introduced earlier
on?

2. How do we construct q
[n,m]
0,m from F [n,m]?

3. What recurrence relations hold between the q
[n,m]
0,m as n and m vary?

4. How do we construct q
[n,m]
0,m using the Hirota maps?

9. From F [n−m] to F [n,m]

Consider the case that m > n. This is actually sufficient to cover the general case since for
m � n the rational function simplifies to the sum of a polynomial and a rational function with
m > n. This is simply an analytic expression of the fact that for σ � 0, V

[σ ]
0 has a finite

dimensional submodule. Nevertheless the formulae we will develop also hold when n � m.
F [n,m](x, y) is clearly associated with what we have called an analytic module of the kind

F
[σ ]
0 for σ = n − m but with additional relations.

The coefficients of Q[n,m] satisfy the linear system,



f
[σ ]
n+1 f [σ ]

n f
[σ ]
n−1 . . . f

[σ ]
0 0 . . .

f
[σ ]
n+2 f

[σ ]
n+1 f [σ ]

n . . . f
[σ ]
1 f

[σ ]
0 . . .

... 0

f [σ ]
m f

[σ ]
m−1 f

[σ ]
0

...
...

f
[σ ]
n+m+1 f

[σ ]
n+m f

[σ ]
n+m−1 f

[σ ]
n+1







q
[n,m]
0,m

q
[n,m]
1,m−1

...

q
[n,m]
m,0




= 0 (9.1)

where we have abbreviated the suffices of the f in an obvious way to simplify the presentation.
Hence the (m + 1) × (m + 1) determinant of coefficients of f [σ ] must vanish. Call this

determinant δ[n,m]. It is easy to see that it is of order m + 1 in f
[σ ]
n+1 and that

δ[n,m] = (
f

[σ ]
n+1

)m+1 − mf
[σ ]
n+2f

[σ ]
n

(
f

[σ ]
n+1

)m−1
+ · · · . (9.2)

The condition δ[n,m] = 0 is to be regarded as a relation which defines fn+m+1 in terms of
the fundamental variables. As there can be no relation between the fundamental variables, it
must be that

e(δ[n,m]) = 0.

Consequently, δ[n,m] ∈ Symm
(⊗m+1

F
[σ ]
0

)
and is a highest weight vector.

Relations defining the further coefficients of f [σ ] will follow by applying the operator f
to δ[n,m].

Application of the Casimir to δ[n,m] gives

C(δ[n,m]) = 1
2 (m + 1)(n + m + 2)((m + 1)(n + m + 2) − 2)δ[n,m].

This careful calculation requires knowing only the two terms shown in (9.2) which are
mixed under the application of C.

Thus we can identify δ[n,m] as the highest weight vector of a module isomorphic to
F

[−(m+1)(m+n+2)]
0 inside Symm

(⊗m+1
F

[σ ]
0

)
.

We therefore arrive at the following construction for the module corresponding to the
function F [n,m]. Take the symmetric m + 1 fold tensor product of F [σ ] and factor out the
submodule isomorphic to F

[−(m+1)(m+n+2)]
0 generated by δ[n,m]. Then the f

[n,m]
i,n−m−i are generated

by the quotient action of powers of f acting on f
[σ ]
0,σ , σ = n − m.
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10. From F [n,m] to q
[n,m]
0,m

As the coefficients of Q[n,m] form a zero eigenvector of the matrix of f -coefficients in (9.1)
they must themselves be, up to a common factor, the signed cofactors of the determinant δ[n,m].
Thus

q
[n,m]
0,m = λ

∣∣∣∣∣∣∣∣∣∣∣

f
[σ ]
n+1 f [σ ]

n . . .

f
[σ ]
n+2 f

[σ ]
n+1 . . .

...
...

f
[σ ]
n+m f

[σ ]
n+m−1 f

[σ ]
n+1

∣∣∣∣∣∣∣∣∣∣∣
(10.1)

q
[n,m]
1,m−1 = −λ

∣∣∣∣∣∣∣∣∣∣∣

f
[σ ]
n+2 f [σ ]

n . . .

f
[σ ]
n+3 f

[σ ]
n+1 . . .

...
...

f
[σ ]
n+m+1 f

[σ ]
n+m−1 f

[σ ]
n+1

∣∣∣∣∣∣∣∣∣∣∣
(10.2)

etc but we have to choose λ to ensure that the relation

f
(
q

[n,m]
0,m

) = −q
[n,m]
1,m−1

holds, so that the q
[n,m]
i,m−i do indeed form a finite dimensional representation.

It is easy to see that the above can be written as

q
[n,m]
0,m = λδ[n,m−1] (10.3)

q
[n,m]
1,m−1 = λ

n + m + 1
f (δ[n,m−1]) (10.4)

which implies that

λ = (δ[n,m−1])−
n+m+2
n+m+1

and, in consequence,

q
[n,m]
0,m = (δ[n,m−1])−

1
n+m+1 (10.5)

p
[n,m]
0,n = f0q

[n,m]
0,m . (10.6)

11. Examples

In order to put some intuitive meat around this rather minimalist skeleton we here derive
some Padé approximant formula as described above. We have implemented the representation
theory in MAPLE because the manipulations quickly become a headache otherwise. These
formulae should be compared with those which are simply obtained using the MAPLE Padé
command. The argument above works for n � 0, so we illustrate these cases also.

11.1. n = 0, m = 1

δ[0,1] =
∣∣∣∣f1 f0

f2 f1

∣∣∣∣
q

[0,1]
0 = f

− 1
2

1
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q
[0,1]
1 = −f

(
f

− 1
2

1

) = −f
− 3

2
1 f2 = −f −1

0 f
1
2

1 mod δ[0,1]

q
[0,1]
2 = −1

2
f
(−f −1

0 f
1
2

1

) = 0 mod δ[0,1]

p
[0,1]
0 = f0f

− 1
2

1

p
[0,1]
1 = −f

(
f0f

− 1
2

1

) = 0 mod δ[0,1]

f [0,1](x, y) = f0f
− 1

2
1

yf
− 1

2
1 − xf −1

0 f
1
2

1

= f 2
0

yf0 − xf1
.

(11.1)

11.2. n = 1, m = 1

δ[1,1] =
∣∣∣∣f2 f1

f3 f2

∣∣∣∣
q

[1,1]
0 = f

− 1
3

2

q
[1,1]
1 = −f

(
f

− 1
3

2

) = −f
− 4

3
2 f3 = −f −1

1 f
2
3

2 mod δ[1,1]

q
[1,1]
2 = −1

2
f
(−f −1

1 f
2
3

2

) = 0 mod δ[1,1]

p
[1,1]
0 = f0f

− 1
3

2 (11.2)

p
[1,1]
1 = −f

(
f0f

− 1
3

2

) = −f −1
1 f

− 1
3

2

(
f0f2 − f 2

1

)
mod δ[1,1]

p
[1,1]
2 = −1

2
f
(
f −1

1 f
− 1

3
2

(
f0f2 − f 2

1

)) = 0 mod δ[1,1]

f [1,1](x, y) = yf0f
− 1

3
2 − xf −1

1 f
− 1

3
2

(
f0f2 − f 2

1

)
yf

− 1
3

2 − xf −1
1 f

2
3

2

= yf0f1 − x
(
f0f2 − f 2

1

)
yf1 − xf2

.

11.3. n = 0, m = 2

δ[0,2] =

∣∣∣∣∣∣∣
f1 f0 0

f2 f1 f0

f3 f2 f1

∣∣∣∣∣∣∣
q

[0,2]
0 = (

f 2
1 − f0f2

)− 1
3

q
[0,2]
1 = −f

((
f 2

1 − f0f2
)− 1

3
) = (

f 2
1 − f0f2

)− 2
3 (f0f3 − f1f2)

= −f −1
0 f1

(
f 2

1 − f0f2
)− 1

3 mod δ[0,2]

q
[0,2]
2 = −1

2
f
(−f −1

0 f1
(
f 2

1 − f0f2
)− 1

3
)

= −f −2
0

(
f 2

1 − f0f2
) 2

3 mod δ[0,2]

q
[0,2]
3 = −1

3
f
(−f −2

0

(
f 2

1 − f0f2
) 2

3
) = 0 mod δ[0,2]
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p
[0,2]
0 = f0

(
f 2

1 − f0f2
)− 1

3

p
[0,2]
1 = −f

(
f0

(
f 2

1 − f0f2
)− 1

3
) = 0 mod δ[0,2]

f [0,2](x, y) = f0
(
f 2

1 − f0f2
)− 1

3

y2
(
f 2

1 − f0f2
)− 1

3 − yxf −1
0 f1

(
f 2

1 − f0f2
)− 1

3 + x2f −2
0

(
f 2

1 − f0f2
) 2

3

= f 3
0

y2f 2
0 − xyf0f1 + x2

(
f 2

1 − f0f2
) . (11.3)

11.4. n = 2, m = 1

δ[2,1] =
∣∣∣∣f3 f2

f4 f3

∣∣∣∣
q

[2,1]
0 = f

− 1
4

3

q
[2,1]
1 = −f

(
f

− 1
4

3

) = −f −1
2 f

3
4

3 mod δ[2,1]

q
[2,1]
2 = −1

2
f
(−f −1

2 f
3
4

3

) = 0 mod δ[2,1]

p
[2,1]
0 = f0f

− 1
4

3

p
[2,1]
1 = −f

(
f0f

− 1
4

3

) = −f −1
2 f

− 1
4

3 (f0f3 − f1f2) mod δ[2,1]

p
[2,1]
2 = −1

2
f
(−f −1

2 f
− 1

4
3 (f0f3 − f1f2)

)

= −f
− 1

4
3 f −1

2

(
f3f1 − f 2

2

)
mod δ[2,1]

p
[2,1]
3 = −1

3
f
(−f

− 1
4

3 f −1
2

(
f3f1 − f 2

2

)) = 0 mod δ[2,1]

f [2,1](x, y) = y2f0f
− 1

4
3 − xyf −1

2 f
− 1

4
3 (f0f3 − f1f2) − x2f

− 1
4

3 f −1
2

(
f3f1 − f 2

2

)
yf

− 1
4

3 − xf −1
2 f

3
4

3

= y2f0f2 − xy(f0f3 − f1f2) − x2
(
f3f1 − f 2

2

)
yf2 − xf3

.

(11.4)

11.5. n = 1, m = 2

δ[1,2] =

∣∣∣∣∣∣∣
f2 f1 f0

f3 f2 f1

f4 f3 f2

∣∣∣∣∣∣∣
q

[1,2]
0 = (

f 2
2 − f3f1

)− 1
4

q
[1,2]
1 = −f

(
f 2

2 − f3f1
)− 1

4
)

= −(
f 2

2 − f3f1
)−1/4(

f 2
1 − f0f2

)−1
(f1f2 − f3f0) mod δ[1,2]

q
[1,2]
2 = −1

2
f
(−(

f 2
2 − f3f1

)−1/4(
f 2

1 − f0f2
)−1

(f1f2 − f3f0)
)

= (
f 2

1 − f0f2
)−1(

f 2
2 − f3f1

)3/4
mod δ[1,2]



7708 C Athorne

q
[1,2]
3 = −1

3
f
((

f 2
1 − f0f2

)−1(
f 2

2 − f3f1
)3/4) = 0 mod δ[1,2]

p
[1,2]
0 = f0

(
f 2

2 − f1f3
)− 1

4

p
[1,2]
1 = −f

(
f0

(
f 2

2 − f1f3
)− 1

4
)

= (
f 2

1 − f0f2
)−1(

f 2
2 − f1f3

)−1/4(
f 3

1 − 2f0f1f2 + f 2
0 f3

)
mod δ[1,2]

p
[1,2]
2 = −1

2
f
((

f 2
1 − f0f2

)−1(
f 2

2 − f1f3
)−1/4(

f 3
1 − 2f0f1f2 + f 2

0 f3
))

= 0 mod δ[1,2]

f [1,2](x, y) = yf0
(
f 2

1 − f0f2
)

+ x
(
f 3

1 − 2f0f1f2 + f 2
0 f3

)
y2

(
f 2

1 − f0f2
) − xy(f1f2 − f0f3) + x2

(
f 2

2 − f1f3
) . (11.5)

11.6. n = 0, m = 3

δ[0,3] =

∣∣∣∣∣∣∣∣∣∣

f1 f0 0 0

f2 f1 f0 0

f3 f2 f1 f0

f4 f3 f2 f1

∣∣∣∣∣∣∣∣∣∣
q

[0,3]
0 = (

f 3
1 − 2f0f1f2 + f 2

0 f3
)− 1

4

q
[0,3]
1 = −f

((
f 3

1 − 2f0f1f2 + f 2
0 f3

)− 1
4
)

= −f −1
0

(
f 3

1 − 2f0f1f2 + f 2
0 f3

)− 1
4 f1 mod δ[0,3]

q
[0,3]
2 = −1

2
f
(−f −1

0

(
f 3

1 − 2f0f1f2 + f 2
0 f3

)− 1
4 f1

)

= f −2
0

(
f 3

1 − 2f0f1f2 + f 2
0 f3

)− 1
4
(
f 2

1 − f0f2
)

mod δ[0,3]

q
[0,3]
3 = −1

3
f
(
f −2

0

(
f 3

1 − 2f0f1f2 + f 2
0 f3

)− 1
4
(
f 2

1 − f0f2
))

= −f −3
0

(
f 3

1 + f 2
0 f3 − 2f0f1f2

)3/4
mod δ[0,3]

q
[0,3]
4 = −1

4
f
(−f −3

0

(
f 3

1 + f 2
0 f3 − 2f0f1f2

)3/4) = 0 mod δ[0,3]

p
[0,3]
0 = f0

(
f 3

1 − 2f0f1f2 + f 2
0 f3

)− 1
4

p
[0,3]
1 = −f

(
f0

(
f 3

1 − 2f0f1f2 + f 2
0 f3

)− 1
4
) = 0 mod δ[0,3]

f [0,3](x, y) = f 4
0

y3f 3
0 − y2xf 2

0 f1 + yx2f0
(
f 2

1 − f0f2
) − x3

(
f 3

1 + f 2
0 f3 − 2f0f1f2

) .

(11.6)

12. Recurrence relations for highest weight vectors

There is a family of very simple recurrence relation between the δ[n,m] which arise from a
classical determinantal identity (see p 99 of [1]). Suppose that A is an (n + 2)× (n + 2) matrix
with coefficients aij and let iAj denote the matrix with the ith row and j th column removed.
Then

|A||i,kAl,j | = |iAj ||kAl| − |iAl||kAj |. (12.1)
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Then take A = δ[n+1,m+2], i = n, k = 1, l = 1 and j = 2. We obtain

δ[n+1,m+2]δ[n,m] = 1

n + m + 3
f (δ[n,m+1])δ[n+1,m+1] − 1

n + m + 4
f (δ[n+1,m+1])δ[n,m+1]. (12.2)

This is a relation of Lozenge type [7]. It is also a characteristic type of relation within
discrete integrable systems theory [6, 8].

13. The role of Hirota maps

All the δ[n,1] can be constructed as multiple applications of the Hirota maps. It is
straightforward to establish, by induction, the following formula:

1

n!
E

n
(
f

[σ ]
0,σ ⊗ f

[σ ]
0,σ

) =
n∑

p=0

(−1)pCσ
n,pf

[σ+n]
n−p,σ+p ⊗ f

[σ+n]
p,σ+n−p (13.1)

where the integers Cσ
n,p are given by

Cσ
n,p = (σ + 1)(σ + 2) · · · (σ + p)(σ + 1)(σ + 2) · · · (σ + n − p). (13.2)

If n is even and we take 2σ + n + 4 = 0 then all but three of the Cσ
n,p vanish and the

non-vanishing ones are

Cσ
n,n/2−1 = (σ + 1)2(σ + 2)2 · · · (σ + n/2 − 1)2(σ + n/2)(σ + n/2 + 1)

Cσ
n,n/2 = (σ + 1)2(σ + 2)2 · · · (σ + n/2 − 1)2(σ + n/2)2 (13.3)

Cσ
n,n/2+1 = (σ + 1)2(σ + 2)2 · · · (σ + n/2 − 1)2(σ + n/2)(σ + n/2 + 1).

Hence, for σ < −2 choose n = −2σ − 4 and we have

1

n!
E

n
(
f

[−n/2−2]
0,−n/2−2 ⊗ f

[−n/2−2]
0,−n/2−2

) = (n/2 + 1)2(n/2)2(n/2 − 1)2 · · · 22

×
(

1

2
f

[n/2−2]
n/2+1,−3 ⊗ f

[n/2−2]
n/2−1,−1 − f

[n/2−2]
n/2,−2 ⊗ f

[n/2−2]
n/2,−2 +

1

2
f

[n/2−2]
n/2−1,−1 ⊗ f

[n/2−2]
n/2+1,−3

)
.

(13.4)

Replacing n with 2n and symmetrizing over the tensor products to obtain polynomials we
obtain

1

(2n)!
Symm

(
E

2n
(
f

[−n−2]
0,−n−2 ⊗ f

[−n−2]
0,−n−2

))

= −(n + 1)!2
((

f
[n−2]
n,−2

)2 − f
[n−2]
n−1,−1f

[n−2]
n+1,−3

)
= −(n + 1)!2δ[n−1,1]. (13.5)

By introducing suitable generalizations of E appropriate to higher degree tensor products
formulae for the other δ[n,m] will be obtained but this would necessitate extending the current
paper considerably and the details will be left to a further publication.

14. Discussion

We can summarize the results of this paper thus:

• We have introduced some new Hirota maps modelled on but significantly extending
both the classical Hirota derivative and the maps introduced by the author in previous
publications.
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• We have shown that the theory of Padé approximants has a natural interpretation in terms
of certain infinite dimensional representations of sl2.

• We have used the representation theory to express general formulae for the form of the
coefficients in Padé approximants in terms of the action of the algebra on a set of simple
coefficients. General expressions for the approximants are obtained by iteration of simple
differential operators. This obviates the need to invert large systems of linear equations.

• We have defined this family of coefficients in terms of a family of polynomial functions,
δ[n,m], which are interpreted as highest weight vectors in a tensor product of degree m + 1.
The δ[n,m] also generate submodules of relations on the form of the analytic expansion of
the approximant.

• We have shown that the δ[n,m] satisfy four-point (Lozenge-type) relations.
• Finally, for the simplest (quadratic) δ[n,1], we have shown explicitly how they arise under

applications of the simplest Hirota maps.

In further work we will discuss the full Hirota operator algebra on arbitrary tensor products
and the derivation of the δ[n,m].

A simple consequence of the above is that every rational function satisfies a multilinear
differential equation. For the coefficients f

[n,m]
i,n−m−i of the analytic expansion of the [n,m]

Padé approximant are, up to a factor of i!, the derivatives evaluated at z = 0. But then the
relation δ[n,m] = 0 is a differential equation of degree m + 1 and order n + m + 1 satisfied by f .
Conversely, given the order of this differential equation, its general solution is precisely the
general rational function (up to an overall constant factor) with numerator and denominator of
degrees n and m respectively. Further, the fact that this differential equation is in Hirota form
(as has been claimed above but actually shown only when m = 1) must be of relevance to the
theory of integrable systems.

In addition, the lozenge or four-point relation is a staple of treatments of integrable discrete
geometry, so its appearance here in tandem with the Hirota derivative, a denizen of smooth
integrable systems theory, both wearing representation theoretic clothes is of considerable
interest.

This synthesis of representation theory, integrable systems, approximation theory and
discrete geometry appears to be very fruitful and is certainly beautiful if not deep.
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